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Alternative off-lattice model with continuous backbone mass for polymers
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We present an alternative model for polymers with flexible one-dimensional rod chains as backbone. This
model is able to simulate polymers consisting of large monomer units that cannot be described by a bead spring
model with satisfying results. In spite of using large coarse grained units no bond crossing can occur because
of a continuous excluded volume along the backbone. Our model provides an effective way to describe
anisotropic monomers with respect to their mass and their nonbonded interactions. The rods interact with
confocal force fields. The geometric shape of the chemically realistic monomers is conserved by using ellip-
soids which represents the interaction volume as building units for the coarse grained model of the monomers.
Static and dynamic properties of linear polymer melts are investigated using a parametrization for the
bisphenol-A-polycarbonate. We give evidence that our model is able to reproduce the expected scaling behav-
ior of static and dynamic properties of polymer melts. Moreover, we are able to study the reptation behavior in
a computationally efficient way.
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PACS numbe(s): 61.25.Hq, 66.10.Cb, 66.26d

[. INTRODUCTION molecular-dynamics simulations are restricted to small time
scales.

The interest in the physics of polymers was pushed by the Other models have been developed in order to adapt an
need of new materials in all fields of everyday life. Promi- aspherical model to a molecule’s geometry, i.e., the Kushick
nent examples for this are plastic bags made out of polyethand Berne moddb] and the Gay and Berne modél|. They
ylene or compact discs which mainly consist of bisphenol-consider ellipsoids as a model for molecules and calculate
A-polycarbonate (BPA-PQ. The properties of these the forces between two interacting ellipsoids as a function of
materials were investigated by experiments and for some the overlap volume. As far as we know these models have
theory has been established. Nevertheless computer simulaot been used to study flexible polymers and have not been

tions can give a more detailed picture in this context. linked together to form a linear chain with a continuous
Polymers can be modeled for computational purposes in Backbone mass. _ . _
variety of ways; for a recent review see Bindét. Depend- Our approach is an off-lattice model aiming at the diver-

ing on the kind of question and the degree of abstraction, onglty Of the single polymers and simplifying the reconstruc-

has the basic choice between a model on a lattice or in corfion Of the correlation between monomer structure and poly-

tinuous space. The bond fluctuation mofi2l is one of the mer properties, which is difficult to deal with using the other

prominent representatives for a polymer model on the Iatticeg]v%d\zl;" sc')u(rll;rllggf![r:?g:g;/ﬁrsn;h%slmeuolfrtlleq[rr] O(Ifaﬁgrrnnifol-n
The main advantage of this type of models is the computa- ys. (1 9 y
tional efficiency due to the restricted configuration spacerners enters into a model of polymers._ln our mo_del we con-

struct the monomers of the polymer using ellipsoids that rep-

With mcreas!ng Cor.”p“ter. power it was poss_|ble to Stayresent the interaction volume. In this volume we assumed the
closer to reality by simulating polymers by continuum mod-

; _ " existence of a confocal force field which resembles the scal-
els. Two widely used models of this class are the bead springyy pehavior of realistic force fields. In contrast to ellipsoidal

[3] and the united atom modp4]. In both models monomers torce fields this field reduces to a sphere with increasing
or parts of them are considered to be represented by sphericgktance to the generating point(2) With our model it is
force fields. In the united atom model the £Hroups are possible to simulate polymer chains by a continuous flexible
modeled by a spherical force field and the bonded interacone dimensional mass. The masses of the atoms are com-
tions by harmonic forces. In this more atomistic model thebined to one unit and not concentrated in the center of mass
anisotropic intermolecular potential functions of polyatomiclike in a bead spring model but replaced by a one-
molecules are constructed using spherical force fields. As agimensional axis. This is an important improvement even if
effect the inner degrees of freedom of the molecules like thehe mass of the building units is not asymmetric as the ge-
stiff bonds between the units must also be taken into accoundmetry requires.
As the Newton equations have to be integrated such For a linear polymer this means that the masses of the
atoms are smeared out over the backbone and no longer dis-
tributed on points as, for example, in the united atom model.

* Author to whom correspondence should be addressed. The basic idea is that, taking all conformations of the repre-
Electronic address: heermann@tphys.uni-heidelberg.de sented monomer part into account and summing them into
URL: http://wwwcp.tphys.uni-heidelberg.de/ one unit, the resulting mass density is not isotropic and zero
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FIG. 1. Linear polymer chain modeled with the continuous

backbone mass model.
FIG. 2. Interaction with a confocal force field.

dimensional. The construction of a linear polymer chain by
our model is shown in Fig. 1. In the lower part the backbonetional symmetric form and thus it is considered as the inter-
of a linear polymer is shown while the upper part shows theaction volume of the chemical sequences in our model.
interaction volume of the polymer chain in our model. As one wants the force field to degenerate into a sphere

We apply our model to BPA-PC. In our investigations we with increasing distance, we use a confocal force field inside
use a parametrization for this polymer at 800 K, see Table Ithis interaction volume:
We show that our model is able to reproduce the expected
behavior of polymers. This is the topic of the following in- _ d(lp)+d(2p)
vestigations dealing with the static and the dynamic proper- Hinter=Vab 2 ¢
ties of linear polymer chains.

@

whered{” andd! denote the distance of the poimto the

Il. CONTINUOUS BACKBONE MASS MODEL focal points of the ellipsoid and ,is the absolute potential.

) ) _In the case of the BPA-PC we take only a repulsive part,
The continuous backbone mass model in some sense in-

terpolates between the united atom model and the bead Vapdr)=r"8, 2
spring model. On the one hand, it tries to stay as close as

possible to the chemical realistic structure as does the unitédto account because from quantum chemical calculations
atom model, but on the other hand it integrates out all thehe attractive part proves to be negligible. The calculation of
inner degrees of freedom in the same way as the bead spririlge distances is illustrated in Fig. 2.

model in order to be computationally efficient. In contrastto The mass of the building units is distributed between the
these two models it usesonsphericalforce fields for the focal points of the ellipsoids, in the hard core region of the
nonbonded interaction. The main idea of this approach witltonfocal potential. Because of this we perform the crossover
a more general form of the force field is to generalize thefrom a zero-dimensional simulation, i.e., using point masses,
united atom model in such a way that larger atom groups aref flexible polymers to a one-dimensional simulation. This
combined into one construction unit, but the possible anisotalso has the effect that no bond crossing can occur and thus
ropy of these groups is still taken into account. The reasonprevents unphysical effects. These one-dimensional rods are
ing is that the topology of the monomer has a strong influ-assumed to be homogeneous. The calculation of the force of
ence on the physical properties. The simplest anisotropisuch a rod in a confocal force field leads to an elliptic inte-
geometrical object one can think of is an ellipsoid of rota-gral. For this reason we use a Gaussian integration for the

TABLE I. Parameters of the continuous backbone mass model.

Properties Reduced units Real units
Monomer massm 1 4.25<10 P kg
Ellipsoid volume,V 715.27 715.27 A
Ellipsoid large axisa 7.35 7.35 A
Ellipsoid short axisp 4.82 4.82 A
Bond length,l 11.1 11.1 A
Bond angle,f, 110.56 110.56°
Spring constantbond length, k,, 862.81 8.6X 10°°N/(m mol)
Bending constantbond anglg k, 26.5 2.65¢< 10°*N/(m mol)

Simulation time stepAt 0.001 2.06 fs
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computation of this force. In order to form a linear chain thestatic and dynamic properties. In this investigation we use a
ellipsoids are connected at their focal points. parametrization for BPA-PC obtained from quantum chemi-
The parametrization of this model can be generalized ta@al calculationd7]. Table | gives an example for a param-
explicitly include side groups as well as branched polymersetrization at 800 K. In this parametrization one ellipsoid rep-
which are linked to the backbone with harmonic potentials inresents one monomer. The data is obtained by molecular-
order to have no influence on the moment of inertia of thedynamics simulation. Time integration was done by a
rod chain. velocity Verlet algorithm. We simulate the polymers at high
The main ingredient of the simulation is the mass matrixtemperatures to avoid the effect of the slowing down of the
of our rod chains. In order to construct it we must calculatemotion below the glass temperature according to the Vogel-
first the Lagrangian of a single rof,=T;—V; with the ki-  Fulcher law. This will have no effect on the structure of the
netic energyT; and the potential energy; . The subindex simulated polymer because no bond can break and the vibra-
marks the position of the rods in the chain. This one-tions of the bonded interactions will be held at an acceptable
dimensional homogeneous rodas the length; starting at  limit by the choice of an appropriate time step. To compute
& and ending ab; . If we suppose that the rods all have the the force on the rods within the confocal force fields, we use

same massn and that the velocity of the rod mass scales? 10-point Gauss integration. To investigate the properties of

linearly with the position between the boundaries of the rodour model we perform simulations at different chain lengths
the kinetic energy can be written as and different densities. The different densities are related to
different volume fractionsb. We calculate the volume frac-
S tion ®@ as ratio of the volume where according to the given
[ m o (imx)ai+xb; 2 n 02 kinetic energy no monomer can be the total system volume
Ti=3| +|————| dx=im(a’+ab;+b?). 9y y '

o | l;

(©)) A. Static properties

Adding the single terms of the rods building the chain we get First we present some data and considerations concerning
the LagrangianC of the whole rod chain. The equations of the static properties of a linear polymer melt within our
motion of the chain can be calculated from the Lagrangemodel. We first validate that our model is able to reproduce
equations of the second kind. Since the equations of motiothe scaling laws of the Rouse model within the range in
separate in each direction, we have only to solve three tridiwhich they are good approximations. The Rouse model de-
agonal N+ 1) X (N+ 1) matrices per chain, which consist of scribes the polymer as a random chain of points. Two re-

N rods per time step of the form

Wx=F, (4)

2 1.0 0 % Fio

m 1 4 1 O .).(1 F11+F21
6|0 1 4 1 N - O

X FootFa

with the forceF;; on the coordinatg¢ of the flexible pointi
of the chain

LY

Fij= En (6)

and¥; denoting the accelerations of the flexible points of the
chain. The flexible points are the link points of the ellipsoids
and the end points of the rod chain. The subindices mark th
positions in the chain: 0 and+ 1 are the end points of the

chain and the numbers between them denotes the Iinkin9

points of rods in the chain.

The bonded interactions between neighboring units ar

given by harmonic length and angle potentials:
Hbond:%k(r_ro)za (7)
Hangle= 3 K(COS 6—COS 6)* (8)

with the bond lengths and the bending angle® Herer,
and 6, denote the mean values.

gimes can be found concerning the polymer statics: At short
distances the polymer is a self-avoiding random walk as the
excluded volume effect prevents the monomers from being
in the same place at the same time. At long distances the
polymer chain is a pure random walk since in a melt the
interactions have no effect beyond a certain screening length.
For example, the end-to-end distarRery— 7 of a chain
consisting ofN monomers obeys the scaling la®@?)oN2”
with the universal exponent In the case of the simple ran-
dom walk »=0.5 and for the self-avoiding random waik
~0.59.

In order to prove that this behavior of polymers is also
seen in our model we compute the single chain structure

factor S4(q),
2
> : 9
lai

&nd estimate the screening lengthThe index|q| indicates
the spherical average ove€ vectors of the same absolute
alue. One expects good solvent properéy)~q 2 on
length scalegl)<2w/q<£(p) and random walk behavior
S.(q)~q " for &(p) <2mlq<(R2Y2 wherep is the den-
sity of the polymer melt and’)=0.59 as expected by the
self-avoiding random walk8].

In Fig. 3 we show that our model reproduces the expected
behavior. It displays the single chain structure factor for a
volume faction of®=0.6 and a chain lengths of 30. We
averaged over 200 configurations that were written out every
60 000 molecular-dynamics steps. Fitting straight lines with

N
S gld ]
=1

1
ss<q>=<N

In this paper we show that our model is able to reproducea slope 1#=1.695, respectively, 2 to the data in Fig. 3 we

the expected behavior of polymer melts concerning soméind a crossover

between the two regimes gt
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FIG. 3. Single chain structure factor for chains with length The crossover from Rouse behavior to reptation dynamics
=30 at®=0.60 andT =800 K. can be easily shown by the investigation of the diffusion
constantD,

=0.225 A1, This vyields a screening lengthé(p 95
=1.374 g/cm)~27.9 A. Since our average monomer D=lim 5t (13
length is about 11.1 A, the intermolecular interaction is t—e
screened out at a distance of about 2.5 monomer lengths at a ] ]
volume fraction® = 0.60. According to the reptation theory one would expect a cross-

over from~N~1to a~N~2 regime[14]. Our data in Fig. 4
for a density of® =0.60 show a crossover from a Rouse to a
reptation regime that is consistent with the reptation theory.
The dynamics of polymers is as intriguing as ever.The entanglement lengtN, is twice the chain lengtiN,
Whether the investigation of the dynamics is made by exwhere this crossover occurisl,=2N.. Using this correla-
periment or computer simulation, surprising new insight istion we findN,=4*1 at this density. This is an interesting
found. Since the work of de Genng] it was tried to find  result due to the fact that for studies of long-scale dynamics
the phenomenon of reptation in polymer melts. Experimentaby computer simulations a rather small entanglement length
evidencd 9] and computer simulatiof10,11] gave reason to is needed since the long-scale dynamics is determined by the
believe that the reptation model is indeed valid. Previougatio N/N which in consequence must be very large. Thus
simulation models needed very long chains concerning thwe need not to simulate very long chains at the density of
number of units to reach the reptation regime, lattice model$ =0.60 to get an ratio dl/N, of approximately 7, which is
[12] as well as off-lattice modelsl3]. Our model shows the in the present simulations in polymer physics a common
predicted dynamic behavior in the mean-square displacemenglue[15].
of the chains already at 40 repeating units at a volume frac- The study of the late time behavior of the mean-square
tion of ®=0.32. displacemeng,(t) leads to the several crossovers predicted
One advantage of a computer simulation on the monomdpy the reptation theory14]. At short time scaleg(t) is
scale is that the positions of the monomers and their timeffected by excluded volume interactions and follows the
developments are known. Thus direct insight into the dy-$ehaviorg,(t)=(12)(Wt)11* )] where v=0.59 as we
namic behavior of polymer systems is given by the examihave to deal with a self-avoiding chain. He'¢ denotes a
nation of various mean-square displacements. For this wdisplacement rate. At larger time scales Rouse behavior
define, as usual, three different displacements: the mean-t2 occurs at timesr<t<7,=NZ/W. Here 7y is called
square displacement of the monomers in the center of thehe Rouse time and, the entanglement time. At larger times
chains, t> 1, the motion is restricted to a movement along a tube
e . 2 surrounding the chain. Therefore the diffusion of the mono-
91(O=([Frra(t) =iz 0) 1), (10 mers is a random walk on the tube of the polymer, which is
again a random walk. Therefore the exponents predicted for
the corresponding quantity relative to the center of mass othis region are only half of the Rouse valugg(t)~tY*.
the chains, This prediction is valid only for times< 7z=N?/W (Rouse
time). Forslater times we exped (t) ~t*2, while starting at
e B = 3 2 t=7my=N*/N.W we have fully relaxed tube constraints and
g2(t) =([Mn/2(t) = Reom(t) — izt Reom(0)]9), (1) g.(t)~t. Figure 5 shows this predicted behavior @f(t)
_ very clearly in all of these four regimes. It displayg(t) for
and the mean-square displacement of the center of mass gfchain lengths of 40 repeating units at a volume fraction of
the chain{COM), ®=0.30. This simulation was performed over 4 000 000
molecular-dynamics steps and took 12 days on a Sun Ultra
93()={[Feom(t) — Feom(0)1?). (12 Sparc Two. The solid points are calculated averaging ap-

B. Dynamic properties
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FIG. 5. g4(t) at T=1000 K, ®=0.32, and chain lengttN L 142
=40. FIG. 6. Log-log plot of the scaled relaxation timeg/\/N'*2”

vs the scaled chain lengtits
proximately 1000 data points gf,(t) with a spacing of 4000
molecular-dynamics steps to obtain points with equidistanameter of polyethylene, which has a tube diameter of about
spacings on a logarithmic length scale to illuminate the dif-23 A [1] we find that our value is comparable to the tube
ferent regimes. The theoreticalf* law is not fully reached diameter of other polymers and may be in good agreement
but displays an exponent of approximately 0.29. It coincidesvith experimental values to be found for BPA-PC.
with the result presented [i11] (=0.3). The reason for this
deviation from the theoretical value could be the influence of ||| RELAXATION TIMES AND THEIR CROSSOVER
crossover effects due to the fact that our reptation regime is SCALING ANALYSIS
only a half-decade long. So we have here no random walk
along the tube of the chain. Or it might be that another theory The crossover from Rouse behavior to reptation dynamics
describes the dynamics of polymer chains in that regime¢an be investigated by the definition of the relaxation times
Several theoretical approaches have been developed on this, 72, and 73 from the intersection points of the curves of
topic in recent years, such as an analysis in the mode codbe several mean-square displacements as follows:
pling theory that predicts a value of 9/326]. With this

value our results are in better agreement, but the chain length g1(71) =<Ré), (15
used here is still too short to state definite conclusions re-
garding the validity of the theory. 92(7-2)=2/3(Ré), (16)

It is interesting that we can see the predicted behavior in
all of four regimes with chains not longer than 40 monomers
at a volume fraction ofb = 0.3 whereas simulations with the

bond fluctuation model have to calculate four times larger . . .
chain lengths(up to N=200) at a volume fraction of® where Rg denotes the radius of gyration of the chain. We

=0.5[17]. If we have a look at the effective chain length now introduce the effective chain length as given by Eq.
[11] (14), which leads to a crossover scaling law for the relax-

ation timesr [11],

93(73) =02(73), (17)

NEN[<|2>3/2(D]1/(3V71) (14)
Wr
with the bond length, the number of flexible points of the Nz = (N (18
chain, and the volume fractio®, we see that the bond
length enters into this equation vial®®. This investigation Figures 6, 7, and 8 show that our data are quite consistent
demonstrates an advantage of our model that in spite of usvith Egs. (14) and (18). The data shown in the figures are
ing anisotropic chain segments our model is still able toobtained from simulations that were performed up until at
reach time scales where entanglement effects influence theast the diffusion time was reached to ensure that the errors
dynamics of the chains. So we are able to take advantage afe at an acceptable limit. Exceptions are two runs with chain
these scaling laws and examine rather long effective chaifengths 40 and 50 at a volume fraction®f=0.60, because
lengths. This encouraged us to pursue the studies presenteden for the smaller of the two chains the reptation regime
in the following section. Considering the mean-square disfasts for one decade and it would take twice the simulation
placements of the inner monomers of the chains one is ablgme to reach the diffusion regime. The scattering of the data
to determine the tube diametey . Its square is of the order that is seen cannot be avoided by the currently available
of the value of the mean-square displacemgntt the en-  computer power and is known from the former investigations
tanglement timer,. Our data for chains with chain length of the relaxation times by computer simulations. As there
N=40 at a mean temperatufe= 1000 K and a volume frac- exist different relaxation times and, moreover, the problem
tion of ®=0.32 yield a square tube diametdfw 745 A2, of aging of polymer melts, which means that there exist re-
Thus we haved;~27 A. If we have a look at the tube di- laxation times that are on a time scale that cannot be ne-
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. . . . =1 to 50. Concerning the statics we found the typical cross-
glected in computer simulation studies. Nevertheless, th‘(:‘3ver predicted from the Rouse model and estimate a screen-
symbols are smaller than the statistical errors of the Me&ty length of about 2.5 monomer lengths. We investigate the
sured values. o dynamics of the polymer system analyzing several mean-

These scaling plots of the relaxation times show the crosssgare displacements. Performing a scaling analysis for sev-
over from a Rouse to a reptation regime, which is consistenga| relaxation times we were able to give evidence for the
with the reptation theory8,14]. From this we can obtain crossover from Rouse to reptation dynamics. Looking at the
another value oN,. We getN.=9+3 for a volume fraction mean-square displacements of inner monomers we could
of ®=0.60 and a mean bond length of 11.1 A. This value isidentify directly the four regimes of different dynamics ac-
higher than the former that we obtained from the crossovegording to the reptation model.
in the behavior of the diffusion exponents. Note that we es- We showed that with rotational ellipsoids polymers con-
timated these values form log-log plots. Hence the error barsisting of larger anisotropic monomers can be modeled suc-
are quite large. cessfully and with computational efficiently. The use of a
one-dimensional hard core region prevents bond crossing.
With a bead-spring model large monomers must be con-
structed out of spheres with volumes larger than the interac-

In this paper we presented the continuous backbone masi®n volume estimated by quantum chemical calculations to
model for polymers and data obtained by molecular-prevent bond crossing. Recently a model for BPA-PC using
dynamics simulations using a parametrization for bisphenolthe bead-spring model has been published that uses two large
A-polycarbonate. The dynamics of a flexible polymer modelbeads per monomdt8]. This will enlarge the number of
consisting of one-dimensional rods is investigated. We focughain units by a factor of 2 and will take 23 times more
on the static and dynamic properties for a wide range otomputer time to pass the Rouse time before the dynamic
densities(from & =0.17 to®=0.60 and chain lengthsN regimes[15] are entered.

IV. CONCLUSIONS
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